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Abstract
We propose that the properties of a glass transition can be understood on the basis of elastic
waves. Elastic waves originating from atomic jumps in a liquid propagate local expansion due
to the anharmonicity of the interatomic potential. This creates dynamic compressive stress,
which increases the activation barrier for other events in a liquid. The non-trivial point is that
the range of propagation of high-frequency elastic waves, del, increases with liquid relaxation
time τ . A self-consistent calculation shows that this increase gives the
Vogel–Fulcher–Tammann (VFT) law. In the proposed theory, we discuss the origin of two
dynamic crossovers in a liquid: (1) the crossover from exponential to non-exponential and from
Arrhenius to VFT relaxation at high temperature and (2) the crossover from the VFT to a more
Arrhenius-like relaxation at low temperature. The corresponding values of τ at the two
crossovers are in quantitative parameter-free agreement with experiments. The origin of the
second crossover allows us to reconcile the ongoing controversy surrounding the possible
divergence of τ . The crossover to Arrhenius relaxation universally takes place when del reaches
system size, thus avoiding divergence and associated theoretical complications such as
identifying the nature of the phase transition and the second phase itself. Finally, we discuss the
effect of volume on τ and the origin of liquid fragility.

1. Introduction

The problem of glass transition has been widely dis-
cussed [1–7], and has been considered as one of the deepest
and most interesting challenges in physics [8]. As widely per-
ceived, a glass transition theory should provide a consistent
explanation of several universal properties of liquids which
set in on lowering the temperature, including the physical
origin of the Vogel–Fulcher–Tammann (VFT) law, slow non-
exponential relaxation and dynamic crossovers [1–7, 9–14].
The most widely studied property is the unusual behaviour
of the liquid relaxation time, τ . On lowering the tempera-
ture, τ is almost never Arrhenius, but follows the VFT law:
τ = τ0 exp( A

T −T0
), where A and T0 are constants [1–7].

As recently reviewed [2], the quest to understand the
origin of the VFT law and other anomalous features of glass
transition has resulted in the development of many theories
and models, which discuss different parameters that control
the glass transition: free volume, entropy, energy landscape,

mode coupling and others. However, there is no agreement
as to what physical parameter governs glass transition [2]. For
this and other reasons, it has been proposed that glass transition
remains a mystery, with no simple picture emerging [1–7].

Existing theories are often elaborate, and approach glass
transition as an outstanding phenomenon that requires novel
or special ideas and mechanisms [2]. Yet we feel that one
should be able to describe the process of cooling a liquid to
a glass using familiar physical concepts which may, however,
operate in a non-trivial and unexpected way. We suggest that a
property relevant to glass transition is elasticity because a glass
differs from a liquid only by its ability to support static shear
stress. Hence, we approach the problem by asking whether
glass transition can be understood on the basis of liquid elastic
properties.

Elastic approaches to glass transition were discussed
previously (see, e.g., [2, 15, 16]), but the problem of explaining
glass transition from first principles remains. Consequently,
there is no microscopic understanding of the origin of the VFT
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law, slow relaxation, dynamic crossovers and other effects of
glass transition.

Recently, we proposed that several important properties
of glass transition can be understood on the basis of elastic
waves in a liquid [17, 18]. We considered the case when a
liquid is perturbed and relaxes to equilibrium. However, it is
important to consider elastic waves that originate from local
atomic jumps in an equilibrium liquid. The main question is
why and how these waves can result in the slowing down of
liquid dynamics, the VFT law and dynamic crossovers.

In this paper, we develop and extend our approach to
glass transition. Considering several anomalous, yet universal
relaxation laws discussed above, we explore non-trivial and
unusual ways in which liquid elastic properties may emerge
during glass transition. We analyse elastic waves originating
from atomic jumps in a liquid, and find that their effect is
to create a dynamic compressive stress which slows down
relaxation of other events. The non-trivial point is that the
range of propagation of these waves increases with liquid
relaxation time. A self-consistent calculation shows that this
increase gives the VFT law. In the proposed theory, we discuss
the origin of two dynamic crossovers in a liquid, the absence of
divergence of τ at T0, the effect of volume on τ and the origin
of liquid fragility.

2. Elastic interaction between local relaxation events

Unlike in solids, atoms in liquids are not fixed in space, but are
constantly rearranging. This gives liquid flow. Each flow event
is a jump of an atom from its surrounding ‘cage’, accompanied
by large-scale rearrangement of the cage atoms. We call this
process a local relaxation event (LRE). A LRE lasts on the
order of Debye vibration period τ0 ≈ 0.1 ps.

There are two known basic properties of LREs. The
first property concerns liquid relaxation time, τ . τ was
phenomenologically introduced by Maxwell in the viscoelastic
picture of flow as τ = η/G∞, where η is liquid viscosity and
G∞ is the instantaneous shear modulus [19]. Frenkel offered
a microscopic interpretation of τ as the time between LREs
at one point in space in a liquid [20]. At high temperature,
τ ≈ τ0. When τ increases to τ ≈ 103 s at glass transition
temperature Tg, a liquid, by convention, forms a glass [2]. The
second property is that a LRE requires an increase of local
volume. As widely discussed [2, 20], the activation barrier for a
LRE at constant cage volume is very large due to strong short-
range interatomic repulsions. Hence, atoms in the cage need
to increase its volume in order to allow for the escape of the
central atom (see figure 1(a)). In doing so, work is performed
to deform the surrounding liquid. This probes liquid elasticity.
The work against the elastic force is equal to the activation
barrier for a LRE, U [2, 20]. This barrier is surmounted by
temperature fluctuations, so that τ = τ0 exp(U/T ) (kB =
1) [20].

An important insight into glass transition comes from the
realization that LREs interact elastically, as we have recently
proposed [17, 18]. A LRE involves restructuring of the
cage that involves large-amplitude atomic motions of about
of 1–2 Å (see figure 1(a)). On the very short timescale

Figure 1. (a) Large-scale cage restructuring due to the atomic jump
induces a propagating high-frequency wave. This wave propagates
volume expansion due to anharmonicity. (b) As a result of the arrival
of compressive wavefronts, atoms in the central cage are under
dynamic compressive stress.

of a LRE (when τ0 < τ ), the surrounding liquid can be
viewed as an elastic medium [20]. Therefore, the large atomic
motion from a LRE elastically deforms the surrounding liquid,
inducing elastic waves. Because their wavelengths are on
the order of interatomic separations, the frequency of these
waves, ω, is on the order of Debye frequency. This means
that in almost the entire range of τ that is relevant for glass
transition, ω > 1/τ holds true. As discussed by Frenkel,
high-frequency ω > 1/τ waves are propagating in a liquid as
in a solid [20]. The existence of propagating high-frequency
waves in liquids is now firmly established: the conclusion
from numerous experiments is that liquids support vibrational
modes which extend down to wavelengths comparable to
interatomic separations, similar to phonons in solids [21].

The propagating high-frequency waves from a LRE
deform the cages around other atoms in a liquid. This affects
their relaxation because, as discussed above, the jump of an
atom depends on its cage. Therefore, LREs interact via the
elastic waves they induce. Elastic interaction between LREs
is the physical origin of cooperativity of relaxation in a liquid,
whose physical origin has been much discussed, but remains
unclear [1, 2, 4, 6]. The key issue is the range of this
interaction.

Let us consider how a solid-like elastic wave is affected
by LREs in a liquid. Because τ sets the period of structural
rearrangements in a liquid, it defines the time of decay of
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induced static shear stress [20, 22] as well as of high-frequency
(ω > 1/τ ) solid-like propagating waves [23]. Note that τ is
similar for high-frequency shear and longitudinal stress [23].
If c is the speed of sound, del = cτ gives the length of stress
decay:

del = cτ. (1)

At the microscopic level, del = cτ originates as follows.
A high-frequency ω > 1/τ wave induced by a LRE propagates
as in a solid until a remote LRE takes place at the wavefront. At
this point, atoms in the wavefront do not pass the oscillations
further on as in a solid with constant structure, but are involved
in large-scale structural fluctuation due to the LRE motion.
Hence, the solid-like elastic wave is absorbed by the motion
of the liquid-like atomic cluster due to the LRE. Suppose the
remote LRE meets the wavefront a distance del away from
the original LRE. del is defined from the equality of the wave
travel time, del/c, and the time at which the remote LRE takes
place at point del. The latter time is given by τ because,
microscopically, τ is the average time between LREs at one
point in space, and we find del = cτ as before.

Hence, del = cτ is the distance over which a high-
frequency wave propagates in a liquid as it would in a solid
without its structure being modified by LREs. In an ideal
crystal with infinite τ , equation (1) gives the infinite range of
wave propagation, as expected.

It is interesting to note that del = cτ is in agreement
with Frenkel’s theory of viscoelastic relaxation in a liquid.
In this theory, waves in a liquid decay with distance x as
∝ exp(−x/d). Using the condition ωτ > 1 explicitly,
Frenkel’s theory gives d ≈ cτ . This is discussed in detail in
the appendix.

We emphasize that similar to Frenkel’s theory, our
derivation of del = cτ is also based on the condition ωτ > 1,
albeit implicitly. Indeed, we approached a liquid from the
solid (elastic) phase, and considered how solid-like waves are
affected by LREs in a liquid. This approach is therefore based
on the assertion that solid-like elastic equilibrium exists in a
liquid, which is the case for high-frequency ω > 1/τ waves.

The non-trivial point here is that del = cτ increases with
τ . This is directly opposite to the usual decay of hydrodynamic
waves, whose propagation range varies as 1/τ (see also, the
appendix). Crucially, this is because the considered solid-like
elastic regime of wave propagation (ωτ > 1) is markedly
different from the commonly discussed hydrodynamic regime
(ωτ < 1). In the latter, LREs are frequent enough to eliminate
the state of elastic equilibrium, and establish hydrodynamic
equilibrium instead. The resulting equations of motion are
those of hydrodynamics and viscous flow [24]. Interestingly,
these equations are widely used to describe liquid dynamics
and glass transition, yet they are not applicable to our approach
to glass transition based on high-frequency interactions. The
presence of these interactions makes our approach essentially
non-hydrodynamic, but elastic instead.

del can be called liquid elasticity length, because it defines
the range over which two LREs interact with each other via
induced high-frequency elastic waves. Importantly, del =
cτ increases on lowering the temperature because τ increases.

We propose that this is the key to the problem of glass
transition.

We finish this section with a comment regarding the
generality of our discussion. Depending on liquid structure
and interactions, LREs may take different forms. For example,
a LRE in covalent network liquids may involve bond switching
from under- to over-coordinated states, whereas in spherically
symmetric systems (e.g., ionic or metallic) it may resemble
an illustration in figure 1. Hence, the way in which high-
frequency waves are generated by LREs may be system-
specific. However, the interaction of LREs via induced elastic
waves is general, and should apply to all liquids undergoing
glass transition, including covalent, ionic, molecular, metallic,
polymeric and others. Consequently, we expect that the VFT
law, dynamic crossovers and other effects of glass transition
discussed below can be understood on the basis of elastic
interactions and del.

3. Dynamic compressive stress

Let us consider the nature of LRE-induced waves in more
detail. In between LREs, atoms in a given local region vibrate
with small amplitudes as in a solid (glass) [20], and a harmonic
approximation can be applied to the same extent as to the
solid phase. As discussed above, a LRE involves large-scale
atomic motions of 1–2 Å. This considerably widens the
distribution of interatomic separations �r . At large �r , the
harmonic approximation no longer applies, and the potential
anharmonicity becomes important. In particular, the decrease
of �r results in a short-range repulsion that is always stronger
than the attraction due to the same increase of �r . Because
the expansion carries a smaller energy penalty, large-amplitude
motion of atoms involved in a LRE results in a short-lived
expansion of the local volume around the LRE. In a simplified
picture, this process can be thought of as the appearance of
‘hot’ local regions in a liquid due to LRE motion and associated
local thermal expansion.

Local volume expansion is propagated away from a LRE
by the high-frequency elastic waves discussed above. We note
that when a sphere expands in a static elastic medium, no
compression takes place at any point. Instead, the system
expands by the amount equal to the increase of the sphere
volume [20], resulting in a pure shear deformation. The strain
components u from an expanding sphere (noting that u → 0
as r → ∞) are urr = −2b/r 3, uθθ = uφφ = b/r 3 [22],
giving pure shear uii = 0. As a result, the energy to statically
expand the sphere of radius r by amount �r depends on the
shear modulus G only: E = 8πGr�r 2 [20].

Unlike in the static case, there is compression at the front
of the expanding wave. At time t , the wavefront causes an
outward displacement of atoms on the sphere of radius ct . This
takes place during time τ0, i.e. very fast, because the wave is
due to the remote LRE that lasts approximately τ0. Until this
displacement causes the motion of the next concentric sphere
with radius of ct + x , where x is on the order of the interatomic
separation, there exists a brief compressive stress in a layer
of thickness x . This stress exists over a time approximately
equal to the period of vibrations of the system of two atoms,
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or τ0, i.e. it is very short. As the wave propagates further,
dynamic compression between the two layers disappears, and
shear deformation is established as discussed above.

Let us now fix an atomic cage in the centre in figure 1(b).
As the front of the wave propagating volume expansion from a
remote LRE arrives at the centre, it causes a brief compressive
stress between the cage boundary atoms and the atoms in
the next layer that include the central atom (see figure 1(b)).
Hence, it puts the cage atoms under dynamic compressive
stress (DCS). Because, as discussed above, the jump of
the central atom requires cage expansion, the compressive
wavefronts arriving at the centre result in more work needed
to expand the cage. This increases the activation barrier for the
central LRE, U , and slows down liquid dynamics.

We emphasize that DCS in a liquid is created by new
elastic waves, which are notably absent in solids, and which
propagate local volume expansions from the hot (in the sense
discussed above) local regions. This process can be compared
to pressure waves generated by local laser heating of a solid.
In this case, the energy that heats up the local regions and
creates these pressure waves is external. In a liquid, the
energy to create DCS is internal, i.e. it is the liquid’s thermal
energy. Here, as temperature increases and the liquid state is
approached from the solid phase, LREs appear as a new type
of ‘hot’ local motion. This motion gives rise to a new set of
expanding elastic waves, and DCS emerges as a result.

4. Derivation of the VFT law

The stage is now set for the calculation of U . U is equal
to the total work required to expand the cage by the amount
required for a LRE to take place [20]. U can be written as U =
U0+U1. Here, U0 is the high temperature activation barrier that
depends on liquid interatomic forces and structure, but not on
the elastic interactions with other LREs, i.e. is non-cooperative,
or intrinsic. U1 represents the interaction (cooperative) term.
U1 is equal to the additional work to expand the cage due to
the arriving compressive wavefronts from other LREs, and is
set dynamically. Let q be the increase of the cage volume
required for a LRE to take place. q ≈ a3, where a is the
interatomic separation of about 1 Å. As discussed above, DCS
exists in the arriving wavefront, in a layer of thickness a. Let
us consider DCS created by a remote LRE i distance r away
from the centre in figure 1(b). If pi(r) is the value of DCS at
the centre, the remote LRE contributes qpi(r) to U1. Then,

U1 =
Nτ∑

i=1
qpi(r), where Nτ is the number of compressive

wavefronts that pass through the centre during time τ , and U
reads

U = U0 +
Nτ∑

i=1

qpi(r). (2)

According to equation (1), the sum in equation (2)
includes elastic waves from LREs inside the sphere of radius
del = cτ . Importantly, each of the local relaxing regions inside
this sphere contributes to the sum once. This is due to two
reasons. First, because the central event relaxes during time
τ , waves from all the events located distance cτ away from

the centre have enough time to propagate to the central point.
Second, because a remote event also relaxes during time τ , it
contributes only one wave during the time of relaxation of the
central event. Hence, the introduced length del = cτ is self-
consistent in that it accounts for the dynamical nature of LREs
as well as for the wave dissipation.

Therefore, equation (2) can be written as

U = U0 + q

del∫

d0/2

4πρr 2 pi(r) dr (3)

where ρ = 6
πd3

0
is the density of local relaxing regions and d0

is the region diameter of about 10 Å.
pi(r) decreases with r . Recall that the short-lived DCS

from a LRE originates at time t in a thin layer of thickness
x , when the outward motion of atoms takes place in a sphere
of radius ct , but not yet in a sphere of radius ct + x . The
strain and stress on the sphere of radius ct decay as in an elastic
medium. This is because the waves under consideration are of
high frequency (ω > 1/τ ) and therefore propagate in elastic
equilibrium as discussed above. In an elastic medium, the
strain on an expanded sphere (i.e. on the sphere of radius ct)
decays as u ∝ 1

r3 [22]. This strain creates pi which, therefore,
also decays as pi(r) ∝ 1

r3 . Let p0 be the value of pi at the cage
boundary, distance d0/2 away from the centre of a relaxing
region. Then, pi(r) = p0(

d0
2r )

3, and equation (3) becomes

U = U0 + 3qp0 ln

(
2del

d0

)

. (4)

According to equation (4), U increases with del. Because
del = cτ itself increases with τ and hence, with U , U is defined
self-consistently. Combining del = cτ with τ = τ0 exp(U/T )

and noting that a ≈ cτ0, we write

del = a exp

(
U

T

)

. (5)

Putting this in equation (4), we find

U = AT

T − T0
(6)

where T0 = 3qp0 and A = U0 − T0 ln d0
2a . From equation (6),

the VFT law follows.
In this theory, the origin of the VFT law is the increase

of del on lowering the temperature (see equations (1) and (4)).
This increase results in a larger number of LREs that elastically
interact with a given event, increasing its activation barrier.
The transition from the VFT to the Arrhenius law takes
place in the limit of small del at high temperature. In this
case, equation (4) gives U = U0, i.e. U becomes non-
cooperative and temperature-independent. This gives the
Arrhenius relaxation: τ = τ0 exp(U0/T ).

T0 = 3qp0 can be roughly estimated by recalling that p0

is created by the local volume increase due to anharmonicity.
Because this increase gives rise to macroscopic thermal
expansion, p0 can be estimated as p0 = αBTm, where B is
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bulk modulus, α is the coefficient of thermal expansion and Tm

is the temperature of local motion during a LRE, which is on
the order of the melting temperature. Taking q ≈ 1 Å

3
and

typical liquid values of B ≈ 10 GPa and α = 10−4–10−3 K−1,
we find T0 = (0.1 − 1)Tm, in order-of-magnitude agreement
with experimental values [9]. Hence, T0 in the derived VFT
law is related to liquid parameters that are physically sensible.

5. Effect of volume

In addition to temperature, our theory also predicts the
dependence of τ on volume or pressure. According to recent
experiments, τ is a function of both temperature and volume,
although temperature has a larger overall effect [25]. In our
theory, pressure has two effects: first, q becomes larger by
the amount equal to the decrease of the cage volume due to
external pressure P , so that the new q ′ = q + qc

P
B , where

qc is the initial cage volume. Second, the activation barrier
U in equation (4), and hence the VFT parameter A, acquire
an additional term q ′ P due to the increased work against the
external pressure.

An interesting prediction is the dependence of T0 on
pressure: because T0 = 3qp0 (see equation (6)), its value
under pressure, T ′

0 , is T ′
0 = 3p0q ′ = 3p0(q + qc

P
B ) =

T0 + 3p0qc
P
B . For small P , B increases linearly with pressure:

B = B0+C P , where B0 is the zero-pressure bulk modulus and
C is a constant, giving T ′

0 = T0+3p0qc
P

B0+C P . Then, for small
P
B0

, T ′
0 = T0 + 3p0qc

P
B0

(1 − C P
B0

). This behaviour is observed
in the experiments: at small P , T0 increases linearly with P ,
with a negative quadratic term appearing at higher P [26, 27].

6. Dynamic crossovers

We now discuss how our theory explains the origin
of dynamic crossovers, the important problem of glass
transition [1–4, 6, 9–14]. Experimentally, there are two
dynamic crossovers in a liquid. The first crossover is at
high temperature, and marks the transition from exponential
to slow stretched-exponential dynamics and from Arrhenius
to VFT relaxation. The physical origin of this crossover has
remained one of the central open questions in the area of glass
transition [1–4, 6, 9]. For various liquids, τ at the crossover is
τ ≈ 1–30 ps [10, 11].

In our theory, the origin of this crossover is understood
as follows. At high temperature when τ = τ0, equation (1)
gives del = cτ0 = a ≈ 1 Å. Therefore, at high temperature
elastic waves from LREs do not propagate beyond the nearest-
neighbour distance. This means that del ≈ 1 Å is shorter than
the distance between two neighbouring LREs, or two adjacent
molecular cages, dm, which varies from dm ≈ 10 Å in small-
molecule to dm ≈ 100 Å in large-molecule liquids. Because
del < dm, LREs do not elastically interact and, therefore,
relax independently, resulting in exponential and Arrhenius
relaxation. On the other hand, when del increases to dm on
lowering the temperature, LREs are no longer independent, but
start interacting via the induced elastic waves. This interaction
gives the VFT law as discussed above and, as we recently
showed [17], stretched-exponential relaxation.

Therefore, the first crossover corresponds to del = dm.
From equation (1), τ at the first crossover, τ1, is

τ1 = dm

c
= dm

a
τ0, (7)

giving τ1 ≈ (10–100)τ0 ≈ 1–10 ps, consistent with the
experimental results.

The second dynamic crossover is at low temperature, and
marks another qualitative change in liquid dynamics [11–14].
The important change is the crossover from the VFT law to
a more Arrhenius behaviour. Starting from the early work
in [28], it was realized that at low temperature the VFT
law predicts a viscosity and U that are larger than those
experimentally measured. Moreover, the experimental U at
low temperature becomes temperature-independent, contrary
to its continuous increase predicted by the VFT law. The
crossover from the VFT law to a more Arrhenius form at low
temperature has now been established in a large number of
glass-forming liquids [11, 13, 14]. The origin of this crossover
is not understood at present.

In our theory, the origin of this crossover is as follows.
When del = L, where L is system size, all LREs in the system
elastically interact. This gives temperature-independent U ∝
ln(L) in equation (4). Hence, U can not increase due to the
increase of del on lowering the temperature, but due to other
effects only (e.g., density increase). As a result, τ crosses over
to a more Arrhenius form.

Hence, the second crossover corresponds to del = L.
From equation (1), τ at the second crossover, τ2, is

τ2 = L

c
= L

a
τ0. (8)

Taking a typical experimental value of L in the range of
0.1–10 mm, we find τ2 ≈ 10−7–10−5 s. This is in good
agreement with τ of the crossover from the VFT to a more
Arrhenius relaxation seen experimentally [14]. In addition, τ2

agrees well with the experimental τ at which other important
liquid properties show a crossover and undergo qualitative
changes [12].

Therefore, the two dynamic crossovers originate in our
theory in a simple and physically transparent way. Derived
solely from the definition of del in equation (1), τ1 = dm/c
and τ2 = L/c give good agreement with the experiments,
without using adjustable parameters. This lends support to the
proposed theory of glass transition.

Importantly, the origin of the second dynamic crossover
in this theory allows us to reconcile what is perhaps the
main ongoing controversy surrounding glass transition, that of
divergence [1, 2, 4–6]. Formally, τ in the VFT law diverges
at T0. Although T0 is always smaller than Tg, it is natural
to ask what the physical significance of T0 is. Starting from
early theories of glass transition, T0 has been associated with
a phase transition into a state of zero configurational entropy
termed ‘ideal glass’ [2, 4–6]. Confounded by a number of
problems [2], this approach was followed by other divergence
scenarios of glass transition that were based on the existence
of an underlying or avoided phase transition [5]. However,
the nature of the phase transition and the second phase itself
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remain unclear, primarily because no long-range order or any
other appreciable structural changes appear on cooling [2, 6].
Moreover, as recently emphasized, there are no experimentally
observed signs of divergence [5]. These issues continue
to fuel the current debate about whether divergence exists
and if so, what it means. The problem is often formulated
as whether glass transition is a thermodynamic or dynamic
phenomenon [2, 4–6].

In our theory, this controversy is reconciled as follows.
Combining equations (5) and (6), we write

del = a exp

(
A

T − T0

)

. (9)

When T approaches T0, del quickly exceeds any finite size of
the system. At this point, τ crosses over to more Arrhenius as
discussed above, moving the divergence to zero temperature.
Therefore, τ does not diverge at T0.

We note that in addition to a seeming divergence of τ at T0,
approaches to glass transition based on thermodynamics and
phase transitions have also been stimulated by the experimental
changes of heat capacity, compressibility and other properties
at Tg [1, 2, 4]. As we recently discussed [29], these changes
can be understood as a natural signature of Tg insofar as Tg is
defined by the freezing of LREs at the experimental timescale.
In other words, the observed changes are related to a liquid
falling out of equilibrium at Tg, rather than to thermodynamics
or a phase transition [29].

7. Fragility

Our theory readily explains the origin of liquid fragility
[1, 2, 4, 6, 7], a widely debated subject in the area of glass
transition. Such an explanation was offered in our recent
paper [18], which we briefly recall below.

Let us consider two extreme cases of ‘strong’ SiO2 and
‘fragile’ o-terphenyl (see figure 2) and calculate del at the
highest measured temperature, Th. From figure 2, τ (Th) is
approximately 10−7 s and 10−12 s for SiO2 and o-terphenyl,
respectively. Taking c ≈ 1000 m s−1, del(Th) is about 0.1 mm
for SiO2 and 1 nm for o-terphenyl. Hence, del for o-terphenyl
grows from microscopic to macroscopic values on lowering the
temperature. This gives large increase of cooperativity and U
in equation (4), i.e. fragile behaviour. On the other hand, del

for SiO2 already approaches system size at Th, leaving little
room for the cooperativity and U to grow on lowering the
temperature (see equation (4)). This gives strong behaviour.

In this theory, liquids that have a large intrinsic activation
barrier and large viscosity (τ ) also have large del, even at high
temperature. This gives little room for U to grow, resulting
in strong behaviour. On the other hand, liquids that have
small viscosity at high temperature and, consequently, small
del, show a large increase of U on lowering the temperature,
i.e. are fragile. An interesting prediction of our theory is that
if the measurements are extended to higher temperature so that
τ and del are small, liquids will become more fragile. Note
that there is no data for strong liquids in the range of small
τ [7] (see also, figure 2) due to high melting points, and the

Figure 2. τ as a function of Tg/T for SiO2 (◦) and o-terphenyl (♦).
τ is calculated from η = G∞τ , where G∞ ≈ 10 GPa. The data of η
are from [7].

evidence for Arrhenius behaviour comes only from the range
where τ is large.

In our theory, fragility can be quantitatively related to
other system properties. Fragility is quantified by parameter
D = A

T0
[7]; the larger D the smaller fragility. In our theory,

A = U0 − T0 ln d0
2a (see equation (6) and below), giving

D = U0

T0
− ln

d0

2a
. (10)

Therefore, fragility is predicted to decrease with the scaled
high temperature activation barrier U0. This is consistent with
the experimental data showing the decrease of fragility with
U0
Tg

[15].

8. Comment on DCS

We make two remarks about DCS. First, if the frequency of
compressive wavefronts arriving at the centre in figure 1(b) is
large enough, the atoms in the central cage may, at first glance,
appear to be under an effective static stress. The necessary
condition for this is that the average time difference between
any two compressive arriving wavefronts, �t , is shorter than
the minimal time set by the elementary vibration period τ0:
�t < τ0. As discussed above, the central region is affected
by all events inside the sphere of radius del = cτ , each
contributing once. Hence, there are Nτ = (cτ)3

(d0/2)3 contributing
local relaxing regions inside the sphere of radius cτ . The
central event relaxes during time τ , hence the average time
between the wavefronts arriving at the centre is �t = τ

Nτ
=

(d0/2)3

c3τ 2 . Because c ≈ a/τ0, the condition �t < τ0 gives

τ > τ0(
d0
2a )

3
2 . Denoting

τmin = τ0

(
d0

2a

) 3
2

(11)

we find that τmin ≈ 1 ps, i.e. is very short.
As discussed in the previous section, del exceeds the

experimental system size L above Tg. In this case, we should

6
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substitute cτ for L, and the condition �t < τ0 gives τ <

τ0(
L
d0

)3. Denoting

τmax = τ0

(
L

d0

)3

(12)

and using a typical value of L of 1 mm, we find τmax ≈ 105 s.
Because τmax � τ (Tg), the condition �t < τ0 is also satisfied
when del > L for a macroscopic system.

Therefore, the necessary condition for the cage atoms to
be under a static stress (�t < τ0) is fulfilled in a very wide
range of τ , including the glass transformation range. However,
the actual value of this stress, ps, vanishes for τ � τ0. Indeed,
the contributions from arriving compressive wavefronts to the
static stress can be summed on the timescale of τ0 only, for two
reasons. First, wavefronts from remote LREs add up only if
they arrive simultaneously, or in practice during the elementary
time period τ0. Second, the duration of the passing wavefront
is also τ0, because the lifetime of the remote LRE that creates
the wave is about τ0. Therefore, ps can be calculated as

ps = ρτ0

del∫

d0/2

4πr 2 pi(r) dr (13)

where ρτ0 is the density of those remote local regions that give
rise to the waves passing through the centre during time τ0.

The number of wavefronts that pass through the centre
during time τ0 is Nτ0 = τ0

�t . Combining this with �t = τ
Nτ

from above gives Nτ0 = τ0
τ

Nτ . Hence, ρτ0 = τ0
τ
ρ, where

ρ = 6
πd3

0
is the density of local relaxing regions introduced

in equation (3). Using ρτ0 in equation (13) and recalling that
del = cτ = aτ

τ0
and pi(r) = p0(

d0
2r )

3, we write

ps = 3p0
τ0

τ

(

ln
τ

τ0
+ ln

2a

d0

)

. (14)

Therefore, ps vanishes for τ � τ0, i.e. for τ at which
del and elastic interactions between LREs become appreciable
in the first place (see section 6). As a result, DCS does not
contribute to liquid internal pressure or equilibrium volume.
Physically, this is because the volume of local regions that
contribute to ps is sparse.

We note that the vanishing of ps is in contrast to
the behaviour of U which increases with τ and del (see
equation (4)). U is given by the total work to be performed
against cage expansion [20]. Because each LRE compresses
the central cage, this work, being an extensive quantity, is the
sum over all pulses that arrive during time τ from within the
sphere of radius del. Therefore, U increases with the number
of contributing LREs and del.

The second remark about DCS concerns equation (2).
After the initial expansion due to a LRE, a remote local
region relaxes back to its original equilibrium volume, sending
a dilatational wave to the centre. However, the dynamic
dilatational stress, pd, and the dynamic compressive stress, p,
do not oscillate around an equilibrium value as in a harmonic
wave, but are set by processes that operate on different

timescales (or, equivalently, length scales, see below), making
propagating density variations essentially anharmonic. Recall
that p is due to fast expansion originating from anharmonic
forces that initially appear between several (3–5) ‘hot’ atoms
of the remote LRE during the elementary vibration period
τ0 ≈ 0.1 ps. As the expanding wave propagates, fast dynamic
compression is created between the two adjacent atomic layers
when one layer is already displaced during τ0 but the other is
not.

On the other hand, dilatation that sets pd and originates
from cooling and contraction of the remote relaxing region is
a slower process for the following reason. Let td be the time
during which pd exists. td is set by the time during which
increased interatomic separations in the expanded remote
region, �r , return to their original (pre-LRE) values, �r0. This
process involves a number of atoms that is necessarily larger
than the number of initially hot atoms, because these hot atoms
interact with their neighbours. As a result of this interaction,
large �r between the initially hot atoms are distributed over
a larger region. This is accompanied by a gradual reduction
of �r . As thermalization of the local region proceeds and
�r = �r0 is established for all the atoms involved, the
dilatation of the relaxing region is complete. Therefore, td

is set by the time of thermalization of atoms affected by the
LRE motion. This thermalization involves at least the nearest
neighbours of the initially hot atoms, hence td is the time of
thermalization of the region whose size is at least equal to the
cage size d0. Therefore, the lower limit of td can be estimated
as d0

c ≈ 1 ps, because thermalization cannot proceed faster than
the phonon speed, and we find td � 1 ps. Hence, td � τ0.

Interestingly, a similar effect is observed in molecular
dynamics simulations of radiation damage. Here, a hot
radiation cascade created by an energetic ion elastically
deforms the surrounding lattice. It is found that fast initial
expansion of the lattice is followed by considerably slower
contraction due to finite thermal conductivity [30].

td � τ0 means that pd 	 p. A mechanical analogy of this
effect is compression of a spring due to a fast compressive force
applied to one end, followed by slow motion in the opposite
direction during which the spring length hardly changes.

pd

p can be related to τ0
td

as follows. Let us consider that
the boundary atom in the central cage is pushed towards the
central atom by force f due to compressive stress p, followed
by the motion in the opposite direction caused by force fd due
to dilatational stress pd that arrives later. Let l be the forward
and reverse displacement of the boundary atom due to p and
pd, respectively. Assuming constant acceleration, f = 2ml

τ 2
0

and

fd = 2ml
t2
d

, where m is the atomic mass. Then, pd

p = fd

f = ( τ0
td
)2.

Hence, pd 	 p because τ0 	 td.
pd

p can also be written as the ratio of the short-range and

medium-range order distances, a
d0

. Using td � d0
c and c = a

τ0
,

pd

p = ( τ0
td
)2 < ( a

d0
)2. Hence, pd 	 p because a 	 d0.

Physically, this result has the following meaning. A statement
equivalent to τ0 	 td is the assertion that the wavelength of
the initial compressive wave is comparable with interatomic
separations in the central cage (because this wave is created
by fast expansion of the remote cage), whereas the wavelength

7
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of the following dilatational wave is larger than the cage size
due to slow contraction. Hence, interatomic separations in the
central cage decrease in the first case, whereas the cage moves
as a whole in the second, resulting in pd 	 p.

From pd 	 p, qpd 	 qp follows, i.e. the negative work
due to pd is small, and can be ignored in equation (2).

9. Summary

In summary, we proposed that the properties of glass transition
can be understood on the basis of elastic waves in a liquid.
Elastic waves originating from atomic jumps in a liquid create
a dynamic compressive stress, which slows down relaxation.
The increase of del on lowering the temperature gives the VFT
law. In addition to temperature, we also predicted the effect of
volume on τ . In the proposed theory, we discussed the origin
of dynamic crossovers, the absence of divergence of τ at T0,
the effect of volume on τ and the origin of liquid fragility.
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Appendix

In this appendix, we establish the equivalence of del introduced
in equation (1) and the result from the viscoelastic theory of
Frenkel [20]. The relevant part of Frenkel’s discussion starts
with the modification of elasticity equations due to relaxation
process in a liquid. Consider, for example, the relationship
between shear stress P and shear strain s: P = 2Gs,
where G is shear modulus. In the presence of relaxation
process the strain includes an extra displacement due to viscous
response, and the total strain is written according to Maxwell
interpolation as

ds

dt
= P

2η
+ 1

2G

dP

dt
. (A.14)

Introducing the operator

A = 1 + τ
d

dt
, (A.15)

where τ = η/G, equation (A.14) can be written as ds
dt =

1
2η

AP . If A−1 is the reciprocal operator to A, P = 2ηA−1 ds
dt .

Because d
dt = A−1

τ
from equation (A.15), P = 2G(1 − A−1)s.

Comparing this with P = 2Gs, we find that the presence of
relaxation process is equivalent to the substitution of G by the
operator M = G(1 − A−1).

Consider the propagation of the wave of P and s with time
dependence exp(iωt). Differentiation gives multiplication by
iω. Then, A = 1 + iωτ , and M is:

M = G

1 + 1
iωτ

. (A.16)

If M = R exp(iφ), the inverse complex velocity

is 1
v

=
√

ρ

M =
√

ρ

R (cos φ

2 − i sin φ

2 ), where ρ is

density. P and s depend on time and position x as f =
exp(iω(t − x/v)). Using the above expression for v, f =
exp(iωt) exp(−ikx) exp(−βx), where k = ω

√
ρ

R cos φ

2 and

absorption coefficient β = ω
√

ρ

R sin φ

2 . Combining the last

two expressions, we write β = 2π tan φ

2
λ

, where λ = 2π
k is the

wavelength.
From equation (A.16), tan φ = 1

ωτ
. For high-frequency

waves ωτ � 1, tan φ ≈ φ = 1
ωτ

, giving β = π
λωτ

. This
is Frenkel’s result [20]. Essentially the same expression is
obtained for high-frequency longitudinal waves [20]. Here,
equations (A.14)–(A.16) are modified to include a finite zero-
frequency bulk modulus.

Let us introduce the dissipation length d = 1/β so that
f ∝ exp(−x/d). Then, d = λωτ

π
. Because ω = 2πc

λ
, d =

2cτ (if ω is close to Debye frequency, the last two formulae
are correct approximately). Therefore, Frenkel’s theory gives
d ≈ cτ as in equation (1).

We note that essential to equation (1) is the solid-like
character of LRE-induced waves: because ω � 1/τ holds
true for these waves, they propagate in elastic equilibrium. Our
derivation of equation (1) was based on this assertion, because
we considered how elastic waves in a solid are modified in
the presence of LREs. Hence, the condition ω � 1/τ is
used in both our and Frenkel’s derivation above. Importantly,
del = cτ increases with τ in this regime of wave propagation.

A different situation arises when ω 	 1/τ . More
frequently discussed in the literature, this case corresponds not
to elastic, but to hydrodynamic equilibrium. When ωτ 	 1,
Frenkel’s theory gives for shear waves φ = π

2 and d = λ
2π

.
Different from the high-frequency case, this means that low-
frequency shear waves are not propagating (because they are
dissipated over the distance comparable to the wavelength),
a result that is also known from hydrodynamics [24]. For
low-frequency ωτ 	 1 longitudinal waves, Frenkel’s theory
gives d on the order of λ

ωτ
[20]. Here, d decreases with

τ , in agreement with hydrodynamics [24], but in contrast to
the high-frequency case due to a different regime of wave
propagation.
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